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Papers devoted to the development of methods of describing the
behavior of materials during creep and stress relaxation in terms of
uniaxial strain data are usually based on the idea of the existence of

a mechanical equation of state, i.e., an equation relating deformation
or rate of deformation, temperature, stress, and time forsuch processes.
The idea of a mechanical equation of state was first put forward by
Nadai [1] and Zener and Holloman [2]. Holloman [3] has reported some
experimental evidence for the existence of such an equation of state,
However, Orowan [4], Dorn et al, [5], and Johnson et al, [6] have
obtained data which are not in agreement with this idea, Freudenthal
[7] has considered the physical basis of these processes and their math-
ematical description, and has not rejected the basic possibility of con-
version of the data of one type of test into another. He ascribes the
various difficulties in this area to insufficient knowledge about the
nature of these processes, Guiu and Pratt [8] have come to the same
conclusion and have noted the complexity of the processes taking
place in the material under test,

It follows from the above papers that attempts to describe the mechan-
ical behavior of a solid by a single simple equation of state with the
samme parameters for every type of test are unlikely to succeed. It is
clear that the behavior of a solid under different types of test can be
described by a generalized equation, but the parameters of this
equation will have different numerical values for each individual type
of test, reflecting the particular physical conditions prevailing during
stress relaxation, creep, and uniaxial strain,

The possibility of describing stress relaxation, creep, and uniaxial
strain by a single general equation is discussed below, An analysis of
experimental data is used to exhibit both the general and particular
features of these processes,

STRESS RELAXATION

Many workers have followed Maxwell and based
their studies of stress relaxation phenomena in metals
on the assumption that the stress relaxation is pro-
portional to the applied stress, i.e.,

—ds / dt = Ko, 0 = ok, (1)

where K is a constant representing the rate of spon-
taneous stress relaxation, and o and o are the stres-
ses at times 0 and t.
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Fig. 1. Stress relaxation data for
copper at room temperature ob—
tained with the UMIR~10 machine
for different initial stresses oy.

It follows that if we plot the stress relaxation curve
on a semilogarithmic scale we should obtain a straight
line of slope equal to K. However, experimental stress
relaxation curves for metals plotted in this way always
have a considerable curvature during the initial period
of time [9].
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Fig. 2. Stress relaxation curves

for copper at room temperature:

solid curves were obtained with

the UMIR-10 machine; dashed

curves were obtained by Davis
[14].

Figure 1 shows the stress relaxation data for mark
M2 copper obtained at room temperature with the
relaxation test machine UMIR~10 designed by Baushis
[10]. The specimens were annealed in vacuum at 550°
C for 2 hours. These curves were obtained under dif-
ferent experimental conditions as compared with [9]
and also take the form of curves rather than straight
lines on a semilogarithmic scale. This confirms the
qualitative difference noted in [9] between the relax-
ation process in metals and the viscoelastic process
described by the Maxwell system. The accumulated
experimental data suggest that Eq. 1 does not reflect

. the real stress relaxation mechanism in metals.

Belyaev [11] and Baushis [12] have assumed that

‘the stress relaxation process can be described by an

equation of the form
—do [ dt = Ko", (2)

whose solution can be written in the form

1 1 .
(n—i)sg_l— v‘}\t. (3)

(n—1) oL T

Analysis of the relaxation data obtained with the
UMIR-10 machine (Fig. 1) on the basis of the equa-
tion

1/06y—1/0=—Kt,
i.e., for n'= 2, the more general equation
t/og—1/0=7f(1,

and for other values of n has shown that Eq. 2 does
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not provide a satisfactory description of the stress
relaxation process in metals, i.e., K # const.
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Fig, 3. The stress relaxation parameter k as a
function of the initial stress op: 1) data obtained
with the UMIR-10 machine; 2) Davis' data at
room temperature; 3) data from [9]; 4) Davis'
data at 165°C,

It was shown in [9] and in a subsequent paper [13]
that stress relaxation in metals and alloys at room and
higher temperatures can be described by the equation

o = g, exp [— kPeP]. 4)

This equation is obtained by integrating Eq. (1) with
K = pkPtP~!, It is clear that the time dependence of the
stresses has a more complicated character since K =
= f(t, 0y} and, consequently, the relaxation process in
metals is not of the visoelastic type.

The exponent p in Eq. (4) can assume values bet-
tween 0 and 1 and is a measure of the degree to which
the relaxation process in metals approaches the visco-
elastic process described by Eq. (1). The parameter
k has the dimensions of [T]™! and characterizes the
true relative stress-relaxation rate in the body, 1/k =
= T 1s the true relaxation time, and K represents the
generalized or effective relative rate of stress re-
laxation in the solid.
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Fig. 4. Creep curves for oxygen-

free copper obtained by Davis at

165°C. Dashed curves were ob-

tained by calculation in accordance
with Eq. (13).

Figure 2 shows a plot of In o against tP based on
the experimental data obtained with the UMIR-10 ma-
chine and the data reported by Davis [14] who used
Boyd's machine to test oxygen-free copper at room
temperature. To obtain the graphs of Fig. 2, the
experimental data were first plotted in the form of
lg L versus lg T, where L = In(g/0y). These graphs
gave straight lines whose slope was determined by
the parameter p. Having determined this parameter

from the graphs, it was then a simple matter to plot
the experimental data in the form of In ¢ against tP.
The true character of the process is better exhibited
in terms of these coordinates.

The data of Fig. 2 show that Eq. (4). is a good ap~
proximation of the stress relaxation process in cop-
per at room temperature. Determinations of the values
of p and k have shown that the exponent p for this ma-
terial is practically independent of the initial stress
used in these tests (p = 0.16 and 0. 24 for copper at
165° C), while the quantity k increases with decreasing
04 1t is clear from Fig. 3 that k is a linear function
of 0y Figure 3 also shows the data for high-purity
copper reported in [9] and Davis' data for copper at
165° C [14].

Equation (1) can be obtained from the general
Maxwell equation:

E:Ede — Ko

T i (K == const). (5)

for ¢ —const
According to Maxwell, there is merely a tran-

sition of elastic deformation with time into a new form

of deformation, namely, viscous (viscoelastic) defor-

mation, and the initial deformation £4 remains con-

stant (pure relaxation). However, Eq. (4) can also

be obtained from Egq. (5) when K # const and elastic

‘deformation passes into a plastic deformation: & —
=» 0, i.e., when the process is elastic-plastic, Equation

(5) can therefore be regarded as a generalized equa-
tion describing viscoelastic and elastic-plastic pro-
cesses.
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Fig. 5. Creep curves according
to Davis [14] using Eq. (13).

Whenk =0 (p =0, T=), Eq. (5) leads to Hooke's

* law. After the application of an instantaneous stress

to an elastic-plastic body, such that oy < 0g, Where
Oe is the physical elastic limit, the stress relaxation
does not occur, and it is only for ¢y > 0, that stress
relaxation takes place. The rate of relaxationincreases
at the same time: 0 — 0g, £ — €¢ {€eis the deformation
corresponding to the physical elastic limit), and

6 — 0, = (04 — 0¢) exp [—kPer], (6)

It is clear that, as the elastic limit increases, there
is a reduction in ¢ — 0, = 0 * (o* is the effective stress)
and k. The parameter p is independent of the magni-
tude of the elastic limit. The data shown in Fig. 3
indicate that the elastic limit of the copper specimen
investigated at room temperature is greater than zero,
and it is only at 165° C that the elastic limit of copper
becomes equal to zero.
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CREEP

When 0 = const and K # const (0 < p < 1) we have
irom Eq. (5) the equation of creep for an elastic-
plastic body:

de
dt

s. (7)

S

Assuming as above that K = pkPtP™!, we have from
Eq. (7)

Ps. (8)

When 0 < 0g the entire deformation & in Eq. (8)
is elastic (e = const) and there is no observable creep,
i.e., §=0. When o > 0, elastic deformation will
continue throughout the time of the test (¢ = ¢/E =
= const), and at the same time there is an increase in
the plastic deformation 6: € +6 = e # const, while in
Eq. (8) we have ¢ = o, Since deformation reaches an
appreciable magnitude during creep, the quantity &
must be interpreted as the true relative deformation
under stress e, i.e., the Hencky deformation which is
related to the Cauchy deformation e, by the well-known
relation

e, =1n (1 + &) (9)

Substituting Eq. (9) into Eq. (8) we have, after some
rearrangement,

1+e2=expﬁ;f tpc*]. (10)

12
L&
If we restrict our attention to the first two terms in
the series expansion of this function, we find that the
total relative deformation during creep is given by

Y4
62:6—1—6=%—tp5*. (11)

Figure 4 shows the creep curves (solid lines) for
oxygen-free copper obtained by Davis at 1656° C [14].
These curves are plotted in the form of lg e, versus
lg t and can readily be converted into straight lines
(Fig. 5). The values of kP and p (p = 0. 36 for all the
curves) were found by a graphical method, and then
Eq. (11) was used to calculate the creep curves shown
in Fig. 4 by the dashed lines. The fact that the solid
and dashed curves of Fig, 4 are practically identical
suggests that the Davis creep curves are satisfactorily
described by Eq. (11).
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Fig. 6. Stress relaxation pa-

rameter k under creep con-

ditions at constantly applied
stress (copper at 165° C).

In Fig. 5 the creep curves are shifted not only as a
result of the increase in the applied pressure g;, but

also as a consequence of the attendant increase in k.
This is shown by Fig. 6 which gives a plot of k as a
function of oy Theelasticlimit oy for copper at 165°C
is shown by the data of Fig. 6 to be zero.

UNIAXIAL STRAIN

The uniaxial-strain process is also adequately de~
scribed by Eq. (5). When a uniaxial stress is applied
by constant speed of the test-machine grip, the true
relative deformationis e; = constands = const(s = P/F |
and o = P/F;, where P isthe load, Fy is the initial cross
section, and F the running cross section) and, there-
fore, ¢ = s only for deformations that are not too high.
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Fig. 7. Uniaxial strain curves

for copper, plotted in the form

of g B versus lg t, where B =
= E&*5/y using Eq. (18).

As in the above stress relaxation and creep proces-
ses we shall assume that K = const, i.e., K =pkPtP™!
(0 < p < 1). Substituting into Eq. (5) and assuming in
accordance with experiment that s =at, we have, after
integration for sg > 0 (se = 0,,)

3

oy = o + SFEPHP. (12)
Putting Eq. (9) into Eq. (12) we obtain
1+ezzexp[%—+ %kptp:f. (13)

Henceforth we shall restrict our attention to the
first two of the expansion terms, so that

p
82:%S+%tp8* , (14)
where e, is the sum of the elastic and plastic defor-
mations, i.e., € + 6.
It was shown earlier [15] that in the case of uni-
axial strain in metals

e2=g+6=%s—|——;—2(3—-se)2, (15)

where sg is the physical elastic limit and vy is the
coefficient of plasticity for the material under test.
From Egs. (14) and (15) we find that

B0 [y = k7. (16)

The length of the specimens tested in [15] was 100
mm and the machine grip was displaced at the rate of
1.2 mm/min. These data and the values of ¥ and sg
obtained in {15] were used to plot lg B versus Igt,
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where B = E6%%/y. Since Ig B =1g kP +p lgt, it was
a simple matter to find the values of p and kP by graph-
ical methods. The values of p for all the materials
were found to be equal to 0. 50.

The graphs given in Fig. 7 for copper [15] show that
Eq. (16) is a very good representation of the uniaxial
strain process.

GENERAL AND SPECIAL FEATURES OF THE PRO-
CESSES

It is clear from the above account that uniaxial
strain, creep, and stress relaxation are satisfactorily
described by the general equation

ds dey -
ar =B —Ks

(K = pkP Py, 17)

Hooke's law (K = 0) is obtained from Egq. (17) when
p = 0. Whe p = 1 we have an equation describing the
mechanical properties of a viscoelastic body. When
0 < p < 1 we have an equation describing the mechan-
ical properties of an elastic-plastic body, When s =
# const and e; = const, Eq. (17) describes uniaxial
elastic-plastic strain (0 < p < 1). For s = const we
obtain the creep equation of Eq. (11), and for e; =
const we have the condition for stress relaxation in the
elastic-plastic body given by Eq. (1).

In pure stress relaxation, the elastic deformation
goes over to a generally different deformation, namely,
plastic deformation, i.e., € — 6. This is a dislocation
process, and since according to {16] for plastic de-
formation 6 = (£§° — eX%), where eqand ¢ are
the block sizes (i.e., the sizes of regions responsible
for coherent scattering of X-rays) in deformed and
undeformed metal, it follows that this process is con-
nected with the fragmentation of blocks or the cor-
responding increase in dislocation density.

Since & = o/E, and & + ¢ = &), we find from Eq.(4) that
the increase in plastic deformation with time during
the stress relaxation process is given by

80 =8 /ey =1 — exp [—k? t]. (18)

Here, and in the analysis given below, the super~
seripts (1), (2), and 3) refer, respectively, to re—
laxation, creep, and strain processes. )

The quantity 6(1) increases throughout the stress
relaxation process from 0 to 1, and the intensity of
the process increases with increasing g, (or ¢, since
k = floy) . When 0 < gy =< &g there will be no stress re-
laxation since then p = 0.

According to Davis' data (Fig. 3), the parameter k
is temperature-sensitive and appears to depend on the
nature of the material. According to the data reported
n [13], the exponent p is sensitive to both temperature
and material structure.

During creep there is an analogous process of spon-
taneous transition of elastic deformation into plastic
deformation but, in this case, elastic deformation in
the body is maintained at a constant level. If we write
Eq. (11) in a form analogous to Eq. (18), i.e.,

8 =08/e=krtr—1, (e>%2), (19)

we obtain for 6(2) numerical values of between zero
and 6() = const (at the end of the process). During
equal time intervals with £® = () we have 6 »
» 6 and, therefore, p(2 > p(1 . According to Dayvis'
data (Figs. 3, 6), k¥’ is somewhat greater than kW (at
165° C) at the same stress.

For uniaxial strain and &g > 0 we have from Eq. (14)

8® =08 /e, = kP tP. {20)

The quantity 5(3) varies between zero and 6(3) > 5@
for a given time interval. In the case of uniaxial strain
the level of elastic deformation ¢ increases contin-
uously and, therefore, the rate of stress relaxation is
higher than during creep: k® > k®) and p®) > p().
The parameter k during the strain process is deter-
mined by the quantity sg and, consequently, by the
coefficient vy, whose magnitude is also determined by
the rate of deformation [16]. The parameter p is
equal to 0.50 (for all materials) as shown above (Fig.
7).

Pure stress relaxation, creep, and uniaxial strain
are thus essentially processes of increasing plastic
deformation due to spontaneous translational factors in
the crystallites which make up the polycrystalline
materials.

Calculations have shown that experimental data on
relaxation, creep, and strain for various types of
copper at room temperature and at 165° C are in sat-
isfactory agreement with Egs. (18), (19), a)nd (20;- In
general, for a given temperature p(“ < p(2 < p(3 y
k O~ k@) and k) « k©®) 1t is clear that the param-
eters k and p, which are quantitative characteristics
of the rate of translation phenomena, have different
values in different cases, since the way in which the
elastic deformation is maintained at each instant of
time is different for the above processes.

The possibility of a more precise description of the
behavior of materials during creep and stress relax-
ation in terms of short-period tests involving uniax-
ial strain is closely related to the problem of finding
more accurate quantitative relationships for these
parameters. This will be a matter for further study.
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